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Continuity of local Maxwellians in various topologies of L I is studied. The 
existence and convergence of approximate solutions of the nonlinear BGK 
model of the Boltzmann equation are proved. 
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1. I N T R O D U C T I O N  

Difficulties in dealing with the Boltzmann collision operator have led to a 
variety of models of the Boltzmann equation. In many of these, the original 
collision term is replaced with a simpler one which is treatable by known 
mathematical  tools, but which still reflects certain characteristic features of 
the original collision operator, for example, the conservation laws (mass, 
momentum,  energy) and the Boltzmann inequality. 

The creators of the Bha tnaga r -Gross -Krook  (BGK) model ~1'2'3) were 
less concerned with the simplicity of the mathematical  properties of their 
model; instead they replaced (speaking from a physical point of view) "a 
large amount  of detail of the two-body interaction which is contained in the 
collision term" by a model "which retains only the qualitative and average 
properties of the true operator" (see Ref. 1). The B G K  model physically 
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describes a gas strongly tending to a Maxwellian distribution. This "ten- 
dency" is reflected also in the fact that, for the spatially homogeneous gas, 
we have exact solutions. 

Let f :  ~2 • R 3 ~ R  + U {0}, where f~ c R3 is a bounded domain with 
smooth boundary, x E f~ is the spatial variable, ( ~  N3 the velocity vari- 
able, and f(x, g;) represents the density distribution at the point x with ve- 
locity (. Denote by D o the set D 0 = { f E L j ( ~ 2 •  3 ) : f > 0 ,  ( l + ( a ) f  
E L](f~ • R3)), and let 0 (x)=  fa~f(x, ti)dl~ be the macroscopic density, 
e(x) = fR~lif(x, Od(/p(x)  the macroscopic velocity, e(x) = fa~[( - e(x)] 2 
f(x, Odg;/2p(x) the macroscopic kinetic energy, and T(x)= 2e(x)/3R 
the macroscopic temperature, where R is the Boltzmann constant. Define 
pointwise the operator 

p(x) 2 
P(f) (x ,~)  = [2~rRT(x)]3/2 exp 2RT(x) 

The BGK collision operator and the BGK equation can be written as 

J( f ) (x ,  ~) = p[ P ( f ) (x ,  4) - f (x,  4)] 

8 f  + ~. Vxf=  j ( f ) ,  t > 0 (1.1) 
8t 

f(O, x, l~) = fo( x, 4) 

Although the collision frequency t, can be a function of 4, x, t or even f 
itself, we shall assume the u is a positive constant. 

Conservation of mass, momentum, and energy is expressed by the 
equalities 

fR3~/iJ(f)d,f;= O, a.e. in x (1.2) 

for i = 0, 1, 2, 3, 4 and f E D o, where 4'; are the collision invariants g'o = 1, 
g,; = ~; for i = 1,2, 3 (components of O, and g;4 = ~ 2. Formally, at least, we 
have also the Boltzmann inequality 

;a3J(f)ln fdli ~< 0 (1.3) 

for fixed x, with equality if and only if f - -  P(f). (1.2) and (1.3) represent 
characteristic features of kinetic models of Boltzmann operators. 

If we consider the spatially homogeneous BGK equation [f(x,()  
independent of x], then (1.2) implies that the zeroth, first, and second 
moments of a solution of (1.1) are constant in time. This suggests that the 
following set should be of some interest: D 1 = ( f  E Ll(~ 3) : f  > 0, f~3~;fd~ 
= M i, i = 0, 1,2,3,4} for fixed M i. Obviously, P :  D]--~ D1, even more, it is 
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a constant operator on D I. Hence considered on Dj (1.1) becomes a linear 
inhomogeneous equation: 

Of _ v [ P - f ] ,  f(0, 4) -- f0(~) 
0t 

where P ( f ) =  P for f ~ D 1 . Therefore we may write the solution of the 
spatially homogeneous equation as 

f ( t , ~ )  = e-~0(~) + (1 - e-~t)P( fo)(~)  (1.4) 

and we see that f tends to a Maxwellian distribution exponentially when 
t ---> oo. 

Define D 2 C L'(R 3) by D 2 = { f  E L'(R 3) : f  ) 0, fa3g/~[d~ = M s, i = O, 
l, 2, 3, fa3~b4fd~ <<. M4).  We complete this introduction with the following 
lemma by Gibbs: 

Lemma 1 (Gibbs) (4'5). Let p ~ D 2 be the uniquely determined 
Maxwellian satisfying fR3~ ~0 d~ = M 4. Then for each f ~ D 2, 

f~3p In p d~ < fR3fln f d ~  

and equality holds only if f = p. 

2. SEMILINEAR EVOLUTION EQUATIONS 

Despite the premier role the BGK equation has played in rarefied gas 
dynamics, there is at present no existence proof even for local solutions of 
the mild initial value problem. In the next section we will study properties 
of the BGK collision operator which will clarify the difficulty in obtaining 
a local existence theorem, and will, as well, prove the existence of a 
"generalized" solution. In order to motivate this study of continuity proper- 
ties of local Maxwellians, we summarize, in this section, the existence 
theory for semilinear differential equations. 

For X an arbitrary Banach space, U the generator of a strongly 
continuous linear semigroup t -~  T(t) ,  F:[O, T] • D - ~ X  a given (non- 
linear) function of t ~ [0, T] C •+ and x 0 ~ D c X, a strong solution of the 
semilinear evolution equation 

Ox _ Ux + F ( t , x ) ,  x(O) = x o E D (2.1) 
Ot 

is an absolutely continuous function t o  x ( t ) ~  D, differentiable a.e. with 
x ( t )  E D(U) a.e., and satisfying (2.1). If F is continuous in an appropriate 
topology (and the integral is defined correspondingly), then a continuous 
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function x(t) ~ D which satisfies 

x(t) = T(t)x o + fo'T(t - s)F[ s,x(s) ] ds (2.2) 

is said to be a mild solution of the initial value problem. 
In the situation where F is continuous in the original Banach space 

topology, a number of existence criteria are known: 

Theorem 1 (Refs. 6 and 7, pp. 335-339). Assume D c X is locally 
closed, F is jointly continuous, and 

lim (l/h)dist[ T(h)x + ~t+hT(t + h -  s)F(t ,x)ds;D] =O (2.3) 
h---~O + J t  

for all x E D and t ~ [0, T]. Then there exists a mild local solution if any of 
the following is true: 

(i) T(t) compact for all t > 0, 
(ii) Ran F compact, 

(iii) F (locally) dissipative. 
In the event that F fails to have the necessary topological properties in 

the original topology, it may be possible to obtain results in the weak 
topology. A general existence theorem related to weak topologies of Banach 
spaces is the following. 

Theorem 2 (Polewczak) (8). Assume D c X weakly closed, F jointly 
weakly sequentially continuous, and (2.3) valid uniformly on strongly 
compact sets of D. Then there exists a mild local solution if either 

(ia) T(-) jointly weakly sequentially continuous, 
(ib) Ran F weakly relatively compact, 

or 
(iia) T(t) weakly compact and the map t ~ T(t) is weakly continu- 

ous, uniformly on the unit sphere of X, for t > 0, 
(iib) for all bounded G c D and x ~ G, IlF(t,x)ll < MG(t ) for some 

locally integrable Me, 
and the integral is taken in the Bochner sense. 

The previous theorem is the sort of result one would hope to apply to 
the BGK equation. Indeed, as we shall see, a natural domain of definition 
for the nonlinear BGK operator is a weakly compact set D in a certain 
Banach space X. Moreover, D is an invariant domain for the semilinear 
evolution equation (2.1). 

For F = F(x) autonomous and D weakly compact, an easy modifica- 
tion of the theorem can be obtained. However, we first define the notion 
of an approximate solution [for F autonomous and T(t) a contraction 
semigroup]. 
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Definition 1. An approximate solution of (2.2) is a sequence 
{ f .  (.) } n~__ ~ of functions f .  : [0, T] ~ D, T > 0, and a sequence ( ( ti ~ ) } .~= l of 
partitions S~.~N(.) of [0, T] such that t ~ - " L "i ) i = 1 i +  1 t i < c. ~ 0, and 

(a) f ,(O) = Xo, f , (  ti") ~ D 

= T ( t  - t~")f,(ti") + ( ~ T ( t  - s)F(f~(t i"))ds,  (b) L(t) 
d t " t  i 

for t E [ti ~ , 6"+ 1) 

(c) I IL( tL , )  - L(ti")ll < E . ( t ;+ , -  ti ~) 

(d) f ~ ( t ) -  T ( t ) x  o - f o o t T ( t -  s )F[ f~ (y , ( s ) ) ]  ds < linen 

for t E [tF,ti+l) where y,,(t) = ti" if t E [tT,ti+ 0 and y, (T)  = T. 
Let us note that from (b) one sees that for each n, f ,  is the mild 

solution on [ti",tF +1) to the nonhomogeneous linear equation ~ ( t ) =  
Ux(t)  + F[f~(ti")], x ( t T ) =  f~(ti" ). More detailed analysis of an approxi- 
mate solution can be found in Ref. 7 (pp. 322-330). 

Corollary 1. Let X be a Banach space, U the generator of a strongly 
continuous semigroup T(t), D a closed set, and F locally bounded. Then 
for each x 0 E D, (2.2) has an approximate solution on [0, T] for some 
T > 0 i f  

(i) (2.3) is valid uniformly on strongly compact sets of D. If (2.2) has 
an approximate solution on [0, T] for some T > 0, and 

(ii) D is weakly compact, T( t )D C_D for t l > 0  and F = ~ m = l a i F  
with od i ~ ~ and F~ : D ~ D, 
then the approximate solution contains a subsequence ( f , , ) i~ l  which 
converges weakly and uniformly (on [0, T]) to a limit f ( t )  and f :  [0, T] ~ D 
is weakly continuous. Finally, if in addition to condition (ii), 

(iii) F :  D ~ X is weakly sequentially continuous, 
thenf( t )  is a mild (global) solution to (2.2). The integral in (2.2) is taken in 
the Bochner sense. 

Let us point out that both (ii) of Corollary 1 and condition (ia) of 
Theorem 2 are essential in proving equicontinuity of the family of approxi- 
mate solutions. Here, however, we do not require joint weak sequential 
continuity of T(.); instead T(t)  is assumed to be D invariant for t >/0. This 
together with the weak compactness of D gives the necessary continuity 
property of T(-) on (0, T] x D (see Ref. 8, Theorem II.0). However, since 
F:  D - ~ X  (not into D), T ( t )F (x )  may not be weakly continuous in t > 0, 
uniformly for x E D. We can overcome this difficulty by imposing an 
additional assumption on F as is done in (ii) of the Corollary. Indeed, 
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T(t)F(x) = ~ i  m laiT(t)Fi(x) together with the joint weak sequential conti- 
nuity of T(.) on (0, T] x D gives the weak continuity of T(t)F(x) in t > O, 
uniformly for x E D. From this equicontinuity of the family of approxi- 
mate solutions is apparent. 

3. CONTINUITY PROPERTIES OF LOCAL MAXWELLIANS AND 
EXISTENCE OF GENERALIZED SOLUTIONS 

Let us define the Banach spaces Lll+~(N3)= ( f E  LI(N3): Ilfll2=- 
fR3(1 + ~2)lfl d~ < ce) and kll +~2(a • N 3) = ( f  ~ Ll(a  • ~ 3 ) :  llfll2 - 
ffaxR,(1 + ~2)lf I d~dx < ~ ). Since L{ +~2(R 3) c LI(R3), we shall refer to the 
L I topology and the LI+~: topology in a natural way, and likewise for 
L 1 +~2(a • R3). 

We define the set D by D - - { f  E Ll(a • R3):f /> 0, ffa• 
= M  o, ffaxa3+4fd~dx< M 4, H(f)<~ Ms}, where Mo, M 4 >  0, and the 
functional H : D ~ a by H(f)  = ffaxa3fln fd~dx.  

The set D is a natural domain on which to define the BGK collision 
operator by virtue of the conservation laws and the H theorem. Indeed, 
finiteness of mass, momenta, and energy are necessary to define P. Further, 
D is an invariant domain for the semilinear evolution equation. In fact, as 
we shall see later, (2.3) is satisfied for all x ~ D. 

It becomes immediately evident, however, that serious problems arise 
in proving an existence theorem in the original k I topology. For although D 
is L l closed, it is not k 1 compact, and, even more, P is not k z continuous 
(original topology). The closedness of D follows from the fact that the 
functional H : D ~ ~ is lower semicontinuous in k 1 (see Ref. 9, Proposition 
5.1). Regarding I_ l compactness of D, it is not difficult to construct a family 
of functions in D which is not compact in L I. To see that P is not 
continuous, it is enough to consider fn o f  in L l such that ( f ~  ~n d~} ~=1 is 
not subsequence convergent pointwise a.e. in x, whence P(f,) cannot 
converge in L 1. 

The topological behavior of P is improved in kll +~, but the compact- 
ness problem of D still remains. More precisely, D is kll+~ closed and 

E 1 2 P: D ~ D is kl+~; continuous, but D is not l+~ compact. The properties 
1 of D are obvious. To see the continuity of P, le tf ,  E D a n d f , ~ f i n  kl+~.  

Then, f , ~ f  in k 1, IIP(f.)ll2~llP(f)ll2 via the conservation laws, and 
f~(1 + ~2)f~d(-->fa~(1 + ,~2)fd~ in Ll(a). Therefore there exists a subse- 
quence {f,,} such that fa~(1 + ~2)f,, d~ converges a.e. in x to fa~(1 + ,f;g)fd~, 
and (after possibly passing to another subsequence) f~3g,jfn, d~--> fR~jfd,f; 
a.e. in x, j = 0, 1, 2, 3, 4. As a result, we have P(f,)---> P(f)  a.e. in x and ~. 
This gives P ( f , ) ~  P(f)  in measure on every subset of finite measure, and 
from the convergence of IIP(f~)lla, P ( / , ) ~  P(f)  in L l 1+~ " 
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This singular behavior in the strong topologies suggests that the BGK 
equation might better be studied in the weak topologies. We begin the 
study of weak continuity properties with some simple, but important, 
generalizations of Gibbs' lemma to the inhomogeneous case. This will lead 
to sufficient conditions for the weak continuity of P as a map on the 
domain D C LI(~ X R3). 

Lemma 1 (See Ref. 9, Proposition 5.1). D is a convex closed set in 
k 1, and for each f E D, f l n  f E L1(~2 • R3). Thus, D is weakly closed, and 
the functional H : D ~ N is weakly lower semicontinuous. 

Note that weak lower semicontinuity follows from the (strong) lower 
semicontinuity of the convex functional H (see Ref. 10, p. 11, Corollary 
2.2). Since, for x fixed, P( f ) (x , - )  is a Maxwellian, we have also the 
following: 

Lemma 2. For each f ~ D, H(P(J0) < H(f). Hence P : D-~ D. 

I .emma 3. For fixed f ~ D suppose g ~ D satisfies 

fa3~ifd~=fa3q~,gd~ a.e. in x 

for i = 0, 1,2, 3, 4, and 

H ( P ( / ) )  = H ( g )  

Then g = P(f)  in kl(f~ • R3). 

Proof. Note first that if (f)']=~ c D, ~i/> 0, ~7=~ai = 1, then 
?/ ?/ 

and in particular, P is idempotent. For P depends upon f only through its 
first three moments. 

Assume that g 4= P(f)  in I_l(f~ x N3). Then 

H ( P ( f ) )  = H(P(  1 g + �89 < H(  1 g + �89 < H ( P ( f ) )  

where the strong convexity of x tnx, x >/0, has been used in the last 
inequality, thus obtaining a contradiction. �9 

Lemma 4 (Refs. 5 and 11). D is a weakly compact set of k~(f~ x R3). 
Even more, for each sequence { fn } c D there exists a subsequence (fn, } 
and an f such that ffa• gd~dx--,ff.• for all measurable g 
such that Ig(x,~)l < c(1 + ~2)k, k < 1. 

The following question arises. Is P Ll-weakly continuous as a map on 
D? We shall show that the answer is no. However, it is instructive first to 
study the implications of (weak) continuity. To that end, let us note that D 
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is weakly metrizable since I_ ~ is separable and D is weakly compact (see 
Ref. 13, Theorem 3, p. 434), and thus weak continuity is equivalent to weak 
sequential continuity, and hence to weak sequential closedness. We have 
the following. 

Theorem 1. Suppose (f.} C D and f.-~f, P(f~)-~g weakly in 
Ll(~2 X R3). Then g = P(f)  if and only if 

(i) IR3~ 2fd~= fR3~ 2g d~ a.e. in x 

and 

(ii) H(g) < H ( P ( f ) )  

Proof. Since L ~ f  weakly in LI(~XR3), /~h(x)(l=,P(L)d~)dx 
feh(x)(f~fdOdx for each h ~ L=(~2). On the other hand, 

and thus 

)==+ ==) == 

L3 f d~= J•3 d~ a.e. in x 
t "  

g 

Using Lemma 4 and similar arguments, we have 

fR~Jd~=lJ~igd~ a.e. i n x  

for i = 0, 1,2, 3, and for i = 4 by assumption (i), Hence P(g) = P(f).  Using 
Lemma 2, H(P(f))~< H(g) and thus, by (ii), H ( P ( f ) ) =  H(g). Then 
Lemma 3 gives P(f)  = g. The converse is trivial. �9 

Remark 1. Assumption (i) would be satisfied if boundedness of one 
of the higher moments of (fn) is assumed; i.e., ffe• <. c for 
k > 2 and for all n. If (i) holds, then (ii) is equivalent to H(P(f) )  = H(g). 
In the spatially homogeneous case, (ii) is always satisfied if (i) is valid. 

To characterize the weak continuity of P, it is enough to consider the 
spatially homogeneous case. Thus, let D h be defined by 

D h : ( f  ~ LI(I~3) I f~.~ O, ll~3fd~: Mo, Ii~3 ~ 2fd~< M 4 ,  

(3 f ln fd~ < MsI, where Mo,M 4 > 0 
JR ) 

T h e o r e m  2. P : D h - ~  D h is not weakly continuous. 
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Proof. Suppose (fn) ~= 1 c D h, f ,  o f  in LI(• 3) and assume P : D h 
D h is L ~ weakly continuous. An easy calculation shows that 

sup fa3f 4P(f. ) d ~ <  oe. 

By an argument analogous to Lemma 4 (after possibly passing to a 
subsequence), P ( f~ , )~g  weakly in [_1(R3) and f~3~2P(f~,)d~ = fa3~Zf~d~ 
~f~2gd~. Since P is weakly continuous, P ( / ) = g  and f~3~zf~id~ 
fa~2fdf. This proves the LI(R 3) topology of D h is equivalent to the 
kll+;2(R 3) topology of D h, which is clearly false. [] 

Let us consider X = Ll(f~ x R3), Y = k I +~2(f2 • R 3) and D as defined at 
the start of this section, Uf = - f (3 f /3x )  together with appropriate differen- 
tiability and boundary conditions on ~2 so that A generates a strongly 
continuous semigroup on X satisfying T(t)D c D (see, for example, Ref. 
9), and moreover, the restriction of T(t) to Y [also denoted by T(t)] exists 
and is a strongly continuous semigroup in Y. Now let us define F ( f )  
= t,[P(f) - f ]  for f in D. By virtue of Theorem 2, (iii) of Corollary 1 in 
Section 2 cannot be satisfied. However, the lemmas above do prove 
existence of an approximate solution in Y c X and its weak convergence in 
X. Indeed, since F is continuous in Y, uniform convergence of (2.3) on 
strongly compact sets of D C Y is equivalent to the uniform convergence of 

lira 1/h dist(T(h)f+ hr( f ) ;  D ) = 0 (3.1) 
h - ~ O  + 

on strongly compact sets of D C Y, where dis t ( f ;D)  is the distance 
function from f to D in the Banach space Y. Furthermore, because of the 
strong continuity o f  T(t) and F in Y and T(t)D C_ D for t/> 0, (3.1) is 
satisfied uniformly on compact sets of D C Y if 

lim 1/h dis t ( f  + hF(f); D ) = 0 (3.2) 
h - ~ 0  + 

uniformly on compact sets of D C Y. Finally, f +  hF(f)= ( 1 -  hp)f+ 
huP(f) E D  for 0 < h <  p- i  and for all f in D, so we see that (3.2) 
converges uniformly in D. Since D is closed in Y, we have the following. 

Theorem 3. The BGK equation (1.1) with x 0 E D has an approxi- 
mate solution in k I +~2(~2 • R3), where the integrals are Riemann integrals in 
L l, + ~2(f~ • R3). 

Theorem 3 together with the continuity of the imbedding Y c X gives 
the existence of an approximate solution in X. Since D is weakly compact 
in X, assumption (ii) of Corollary 1 in Section 2 is satisfied. We have the 
following. 
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Corollary 1. The approximate solution contains a subsequence 
(f,,}i~=l which converges weakly in kl(f~ • ~3) and uniformly (on [0, T]) to 
a limit limi_,~fni(t)= f(t), and f :  [0, T]---> D is weakly continuous. 

We remark that, owing to the lack of a weak continuity property of F, 
we cannot conclude that f(t) is a (mild) solution of (1.1). Such a limiting 
function f(t) may be considered a "generalized" solution of the BGK 
equation. This is similar to the situation in Ref. 12, where the authors were 
likewise unable to say in what sense the limit of their approximate solutions 
to the Boltzmann equation satisfied the original equation. 
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